home *** CD-ROM | disk | FTP | other *** search
/ NeXT Education Software Sampler 1992 Fall / NeXT Education Software Sampler 1992 Fall.iso / Mathematics / Notebooks / CSOMinesCalculus / Chapter3 / ans1.tex next >
LaTeX Document  |  1992-06-20  |  5.8 KB

open in: MacOS 8.1     |     Win98     |     DOS

browse contents    |     view JSON data     |     view as text


This file was processed as: LaTeX Document (document/latex).

ConfidenceProgramDetectionMatch TypeSupport
100% dexvert LaTeX Document (document/latex) magic Supported
1% dexvert Corel 10 Texture (image/corel10Texture) ext Unsupported
1% dexvert Croteam texture file (image/croteamTextureFile) ext Unsupported
1% dexvert Text File (text/txt) fallback Supported
100% file LaTeX document text default
99% file LaTeX document, ASCII text, with very long lines (827) default
100% checkBytes Printable ASCII default
100% perlTextCheck Likely Text (Perl) default
100% siegfried fmt/281 LaTeX (Subdocument) default
100% detectItEasy Format: plain text[LF] default (weak)



hex view
+--------+-------------------------+-------------------------+--------+--------+
|00000000| 5c 64 6f 63 75 6d 65 6e | 74 73 74 79 6c 65 5b 66 |\documen|tstyle[f|
|00000010| 6c 65 71 6e 2c 65 70 73 | 66 2c 63 61 6c 63 5d 7b |leqn,eps|f,calc]{|
|00000020| 61 72 74 69 63 6c 65 7d | 0a 5c 6d 61 72 6b 72 69 |article}|.\markri|
|00000030| 67 68 74 7b 43 68 61 70 | 74 65 72 20 33 3a 20 41 |ght{Chap|ter 3: A|
|00000040| 6e 73 77 65 72 73 20 31 | 7d 0a 5c 62 65 67 69 6e |nswers 1|}.\begin|
|00000050| 7b 64 6f 63 75 6d 65 6e | 74 7d 0a 0a 5c 42 66 7b |{documen|t}..\Bf{|
|00000060| 43 68 61 70 74 65 72 20 | 33 3a 20 41 6e 73 77 65 |Chapter |3: Answe|
|00000070| 72 73 20 31 20 5c 68 66 | 69 6c 6c 20 4a 61 63 6b |rs 1 \hf|ill Jack|
|00000080| 20 4b 2e 20 43 6f 68 65 | 6e 20 5c 68 66 69 6c 6c | K. Cohe|n \hfill|
|00000090| 20 43 6f 6c 6f 72 61 64 | 6f 20 53 63 68 6f 6f 6c | Colorad|o School|
|000000a0| 20 6f 66 20 4d 69 6e 65 | 73 7d 0a 0a 5c 62 65 67 | of Mine|s}..\beg|
|000000b0| 69 6e 7b 65 6e 75 6d 65 | 72 61 74 65 7d 0a 5c 69 |in{enume|rate}.\i|
|000000c0| 74 65 6d 20 54 68 65 20 | 73 6c 6f 70 65 20 6f 66 |tem The |slope of|
|000000d0| 20 24 66 28 78 29 24 20 | 61 74 20 24 78 20 3d 20 | $f(x)$ |at $x = |
|000000e0| 61 24 20 69 73 20 74 68 | 65 20 20 5c 45 6d 7b 64 |a$ is th|e \Em{d|
|000000f0| 65 72 69 76 61 74 69 76 | 65 7d 20 6f 66 20 74 68 |erivativ|e} of th|
|00000100| 65 20 66 75 6e 63 74 69 | 6f 6e 20 61 74 20 24 78 |e functi|on at $x|
|00000110| 20 3d 61 24 2e 20 20 20 | 49 66 20 24 66 28 78 29 | =a$. |If $f(x)|
|00000120| 24 20 69 73 20 69 6e 63 | 72 65 61 73 69 6e 67 20 |$ is inc|reasing |
|00000130| 6f 6e 20 74 68 65 20 69 | 6e 74 65 72 76 61 6c 20 |on the i|nterval |
|00000140| 24 5b 78 5f 31 2c 20 78 | 5f 32 5d 24 20 74 68 65 |$[x_1, x|_2]$ the|
|00000150| 6e 20 74 68 65 20 64 65 | 72 69 76 61 74 69 76 65 |n the de|rivative|
|00000160| 20 69 73 20 20 5c 45 6d | 7b 70 6f 73 69 74 69 76 | is \Em|{positiv|
|00000170| 65 7d 20 20 6f 6e 20 74 | 68 69 73 20 69 6e 74 65 |e} on t|his inte|
|00000180| 72 76 61 6c 2e 20 20 20 | 49 66 20 74 68 65 20 73 |rval. |If the s|
|00000190| 6c 6f 70 65 20 69 73 20 | 6e 65 67 61 74 69 76 65 |lope is |negative|
|000001a0| 20 6f 6e 20 61 6e 20 69 | 6e 74 65 72 76 61 6c 2c | on an i|nterval,|
|000001b0| 20 74 68 65 6e 20 74 68 | 65 20 66 75 6e 63 74 69 | then th|e functi|
|000001c0| 6f 6e 20 69 73 20 20 5c | 45 6d 7b 64 65 63 72 65 |on is \|Em{decre|
|000001d0| 61 73 69 6e 67 7d 20 74 | 68 65 72 65 2e 20 20 49 |asing} t|here. I|
|000001e0| 66 20 74 68 65 20 73 6c | 6f 70 65 20 69 73 20 6e |f the sl|ope is n|
|000001f0| 65 67 61 74 69 76 65 20 | 6f 6e 20 24 5b 61 2c 20 |egative |on $[a, |
|00000200| 63 29 24 20 61 6e 64 20 | 70 6f 73 69 74 69 76 65 |c)$ and |positive|
|00000210| 20 6f 6e 20 24 28 63 2c | 20 62 5d 24 20 61 6e 64 | on $(c,| b]$ and|
|00000220| 20 74 68 65 20 66 75 6e | 63 74 69 6f 6e 20 69 73 | the fun|ction is|
|00000230| 20 63 6f 6e 74 69 6e 75 | 6f 75 73 20 61 74 20 24 | continu|ous at $|
|00000240| 63 24 2c 20 74 68 65 6e | 20 74 68 65 20 66 75 6e |c$, then| the fun|
|00000250| 63 74 69 6f 6e 20 68 61 | 73 20 61 20 20 5c 45 6d |ction ha|s a \Em|
|00000260| 7b 6d 69 6e 69 6d 75 6d | 7d 20 61 74 20 24 78 20 |{minimum|} at $x |
|00000270| 3d 20 63 24 2e 20 20 20 | 20 49 66 20 74 68 65 20 |= c$. | If the |
|00000280| 64 65 72 69 76 61 74 69 | 76 65 20 69 73 20 70 6f |derivati|ve is po|
|00000290| 73 69 74 69 76 65 20 6f | 6e 20 24 5b 61 2c 20 63 |sitive o|n $[a, c|
|000002a0| 29 24 20 61 6e 64 20 6e | 65 67 61 74 69 76 65 20 |)$ and n|egative |
|000002b0| 6f 6e 20 24 28 63 2c 20 | 62 5d 24 20 61 6e 64 20 |on $(c, |b]$ and |
|000002c0| 74 68 65 20 66 75 6e 63 | 74 69 6f 6e 20 69 73 20 |the func|tion is |
|000002d0| 63 6f 6e 74 69 6e 75 6f | 75 73 20 61 74 20 24 63 |continuo|us at $c|
|000002e0| 24 2c 20 74 68 65 6e 20 | 74 68 65 20 66 75 6e 63 |$, then |the func|
|000002f0| 74 69 6f 6e 20 68 61 73 | 20 61 20 20 5c 45 6d 7b |tion has| a \Em{|
|00000300| 6d 61 78 69 6d 75 6d 7d | 20 61 74 20 24 78 20 3d |maximum}| at $x =|
|00000310| 20 63 24 2e 0a 0a 5c 69 | 74 65 6d 20 20 54 68 65 | c$...\i|tem The|
|00000320| 20 64 65 72 69 76 61 74 | 69 76 65 20 6f 66 20 24 | derivat|ive of $|
|00000330| 66 28 78 29 20 3d 20 78 | 5e 33 20 2d 20 32 78 20 |f(x) = x|^3 - 2x |
|00000340| 2b 20 31 24 20 69 73 20 | 24 66 27 28 78 29 20 3d |+ 1$ is |$f'(x) =|
|00000350| 20 33 78 5e 32 20 2d 20 | 32 20 3d 20 33 28 78 5e | 3x^2 - |2 = 3(x^|
|00000360| 32 20 2d 20 32 2f 33 29 | 20 3d 20 32 20 28 78 20 |2 - 2/3)| = 2 (x |
|00000370| 2d 20 5c 73 71 72 74 7b | 20 32 2f 33 7d 29 28 78 |- \sqrt{| 2/3})(x|
|00000380| 20 2b 20 5c 73 71 72 74 | 7b 32 2f 33 7d 29 24 2e | + \sqrt|{2/3})$.|
|00000390| 20 20 20 54 68 75 73 20 | 6f 6e 20 74 68 65 20 63 | Thus |on the c|
|000003a0| 6c 6f 73 65 64 20 69 6e | 74 65 72 76 61 6c 20 24 |losed in|terval $|
|000003b0| 5b 2d 31 2c 20 31 5d 24 | 2c 20 77 65 20 68 61 76 |[-1, 1]$|, we hav|
|000003c0| 65 3a 0a 0a 5c 62 65 67 | 69 6e 7b 74 61 62 75 6c |e:..\beg|in{tabul|
|000003d0| 61 72 7d 7b 6c 7c 63 7c | 63 7c 63 7d 0a 24 78 24 |ar}{l|c||c|c}.$x$|
|000003e0| 20 26 20 24 20 5b 2d 31 | 2c 20 2d 5c 73 71 72 74 | & $ [-1|, -\sqrt|
|000003f0| 7b 32 2f 33 7d 29 24 20 | 26 20 24 28 2d 5c 73 71 |{2/3})$ |& $(-\sq|
|00000400| 72 74 7b 32 2f 33 7d 2c | 20 5c 73 71 72 74 7b 32 |rt{2/3},| \sqrt{2|
|00000410| 2f 33 7d 29 24 20 26 20 | 24 28 5c 73 71 72 74 7b |/3})$ & |$(\sqrt{|
|00000420| 32 2f 33 7d 2c 20 31 5d | 24 20 5c 5c 20 20 5c 68 |2/3}, 1]|$ \\ \h|
|00000430| 6c 69 6e 65 0a 24 66 27 | 24 20 26 20 24 2d 24 20 |line.$f'|$ & $-$ |
|00000440| 26 20 24 2b 24 20 26 20 | 24 2d 24 20 5c 5c 20 20 |& $+$ & |$-$ \\ |
|00000450| 5c 68 6c 69 6e 65 0a 24 | 66 24 20 26 20 24 5c 73 |\hline.$|f$ & $\s|
|00000460| 65 61 72 72 6f 77 24 20 | 26 20 24 5c 6e 65 61 72 |earrow$ |& $\near|
|00000470| 72 6f 77 24 20 26 20 24 | 5c 73 65 61 72 72 6f 77 |row$ & $|\searrow|
|00000480| 24 0a 5c 65 6e 64 7b 74 | 61 62 75 6c 61 72 7d 0a |$.\end{t|abular}.|
|00000490| 0a 54 68 65 20 61 72 72 | 6f 77 73 20 69 6e 20 74 |.The arr|ows in t|
|000004a0| 68 65 20 74 61 62 6c 65 | 20 69 6e 64 69 63 61 74 |he table| indicat|
|000004b0| 65 20 77 68 65 74 68 65 | 72 20 24 66 24 20 69 73 |e whethe|r $f$ is|
|000004c0| 20 69 6e 63 72 65 61 73 | 69 6e 67 2f 64 65 63 72 | increas|ing/decr|
|000004d0| 65 61 73 69 6e 67 20 28 | 77 65 20 67 65 74 20 74 |easing (|we get t|
|000004e0| 68 65 20 74 68 69 72 64 | 20 72 6f 77 20 66 72 6f |he third| row fro|
|000004f0| 6d 20 74 68 65 20 73 65 | 63 6f 6e 64 20 6f 66 20 |m the se|cond of |
|00000500| 63 6f 75 72 73 65 29 2e | 20 20 57 65 20 73 65 65 |course).| We see|
|00000510| 20 74 68 61 74 20 74 68 | 65 20 63 61 6e 64 69 64 | that th|e candid|
|00000520| 61 74 65 73 20 66 6f 72 | 20 6d 61 78 69 6d 75 6d |ates for| maximum|
|00000530| 20 61 72 65 20 24 78 20 | 3d 20 2d 31 24 20 61 6e | are $x |= -1$ an|
|00000540| 64 20 24 78 20 3d 20 5c | 73 71 72 74 7b 32 2f 33 |d $x = \|sqrt{2/3|
|00000550| 7d 24 2c 20 65 76 61 6c | 75 61 74 69 6e 67 20 24 |}$, eval|uating $|
|00000560| 66 24 20 61 74 20 74 68 | 65 73 65 20 70 6f 69 6e |f$ at th|ese poin|
|00000570| 74 73 20 73 68 6f 77 73 | 20 74 68 61 74 20 74 68 |ts shows| that th|
|00000580| 65 20 6d 61 78 69 6d 75 | 6d 20 69 73 20 61 74 20 |e maximu|m is at |
|00000590| 24 78 20 3d 20 5c 73 71 | 72 74 7b 32 2f 33 7d 24 |$x = \sq|rt{2/3}$|
|000005a0| 2e 20 20 53 69 6d 69 6c | 61 72 6c 79 20 24 78 20 |. Simil|arly $x |
|000005b0| 3d 20 2d 5c 73 71 72 74 | 7b 32 2f 33 7d 24 20 67 |= -\sqrt|{2/3}$ g|
|000005c0| 69 76 65 73 20 74 68 65 | 20 6d 69 6e 69 6d 75 6d |ives the| minimum|
|000005d0| 2e 20 20 53 65 65 20 46 | 69 67 75 72 65 20 33 2e |. See F|igure 3.|
|000005e0| 0a 0a 5c 62 65 67 69 6e | 7b 66 69 67 75 72 65 7d |..\begin|{figure}|
|000005f0| 5b 68 74 62 5d 0a 5c 65 | 70 73 66 79 73 69 7a 65 |[htb].\e|psfysize|
|00000600| 20 39 30 70 74 0a 5c 63 | 65 6e 74 65 72 6c 69 6e | 90pt.\c|enterlin|
|00000610| 65 7b 5c 65 70 73 66 66 | 69 6c 65 7b 61 6e 73 31 |e{\epsff|ile{ans1|
|00000620| 70 33 2e 65 70 73 7d 7d | 0a 5c 63 61 70 74 69 6f |p3.eps}}|.\captio|
|00000630| 6e 7b 50 6c 6f 74 20 6f | 66 20 24 78 5e 33 20 2d |n{Plot o|f $x^3 -|
|00000640| 20 32 78 20 2b 20 31 24 | 20 6f 6e 20 24 5b 2d 31 | 2x + 1$| on $[-1|
|00000650| 2c 20 31 5d 24 2e 7d 20 | 0a 5c 65 6e 64 7b 66 69 |, 1]$.} |.\end{fi|
|00000660| 67 75 72 65 7d 0a 0a 0a | 5c 69 74 65 6d 20 54 68 |gure}...|\item Th|
|00000670| 65 20 74 61 62 6c 65 20 | 61 6e 64 20 63 61 6e 64 |e table |and cand|
|00000680| 69 64 61 74 65 73 20 61 | 72 65 20 74 68 65 20 73 |idates a|re the s|
|00000690| 61 6d 65 20 61 73 20 69 | 6e 20 74 68 65 20 6c 61 |ame as i|n the la|
|000006a0| 73 74 20 70 72 6f 62 6c | 65 6d 2c 20 65 78 63 65 |st probl|em, exce|
|000006b0| 70 74 20 72 65 70 6c 61 | 63 65 20 2d 31 20 62 79 |pt repla|ce -1 by|
|000006c0| 20 2d 32 20 61 6e 64 20 | 31 20 62 79 20 32 2e 20 | -2 and |1 by 2. |
|000006d0| 20 54 68 69 73 20 74 69 | 6d 65 20 74 68 65 20 65 | This ti|me the e|
|000006e0| 6e 64 70 6f 69 6e 74 73 | 20 77 69 6e 20 6f 75 74 |ndpoints| win out|
|000006f0| 2c 20 73 65 65 20 46 69 | 67 75 72 65 20 32 2e 0a |, see Fi|gure 2..|
|00000700| 0a 5c 62 65 67 69 6e 7b | 66 69 67 75 72 65 7d 5b |.\begin{|figure}[|
|00000710| 68 74 62 5d 0a 5c 65 70 | 73 66 79 73 69 7a 65 20 |htb].\ep|sfysize |
|00000720| 39 30 70 74 0a 5c 63 65 | 6e 74 65 72 6c 69 6e 65 |90pt.\ce|nterline|
|00000730| 7b 5c 65 70 73 66 66 69 | 6c 65 7b 61 6e 73 31 70 |{\epsffi|le{ans1p|
|00000740| 34 2e 65 70 73 7d 7d 0a | 5c 63 61 70 74 69 6f 6e |4.eps}}.|\caption|
|00000750| 7b 50 6c 6f 74 20 6f 66 | 20 24 78 5e 33 20 2d 20 |{Plot of| $x^3 - |
|00000760| 32 78 20 2b 20 31 24 20 | 6f 6e 20 24 5b 2d 32 2c |2x + 1$ |on $[-2,|
|00000770| 20 32 5d 24 2e 7d 20 0a | 5c 65 6e 64 7b 66 69 67 | 2]$.} .|\end{fig|
|00000780| 75 72 65 7d 0a 0a 0a 5c | 69 74 65 6d 20 20 53 65 |ure}...\|item Se|
|00000790| 65 20 46 69 67 75 72 65 | 20 33 20 28 6e 6f 74 20 |e Figure| 3 (not |
|000007a0| 61 20 68 61 6e 64 20 73 | 6b 65 74 63 68 20 61 64 |a hand s|ketch ad|
|000007b0| 6d 69 74 74 65 64 6c 79 | 29 2e 20 20 41 20 6e 69 |mittedly|). A ni|
|000007c0| 63 65 20 77 61 79 20 74 | 6f 20 64 69 73 70 6c 61 |ce way t|o displa|
|000007d0| 79 20 74 68 65 20 69 6e | 63 72 65 61 73 69 6e 67 |y the in|creasing|
|000007e0| 2f 64 65 63 72 65 61 73 | 69 6e 67 20 69 6e 74 65 |/decreas|ing inte|
|000007f0| 72 76 61 6c 73 20 69 73 | 20 74 6f 20 6d 61 6b 65 |rvals is| to make|
|00000800| 20 61 20 74 61 62 6c 65 | 20 69 73 20 6c 69 6b 65 | a table| is like|
|00000810| 20 74 68 61 74 20 73 68 | 6f 77 6e 20 69 6e 20 70 | that sh|own in p|
|00000820| 72 6f 62 6c 65 6d 20 33 | 2e 20 0a 0a 5c 62 65 67 |roblem 3|. ..\beg|
|00000830| 69 6e 7b 66 69 67 75 72 | 65 7d 5b 68 74 62 5d 0a |in{figur|e}[htb].|
|00000840| 5c 65 70 73 66 79 73 69 | 7a 65 20 39 30 70 74 0a |\epsfysi|ze 90pt.|
|00000850| 5c 63 65 6e 74 65 72 6c | 69 6e 65 7b 5c 65 70 73 |\centerl|ine{\eps|
|00000860| 66 66 69 6c 65 7b 61 6e | 73 31 70 35 2e 65 70 73 |ffile{an|s1p5.eps|
|00000870| 7d 7d 0a 5c 63 61 70 74 | 69 6f 6e 7b 44 65 72 69 |}}.\capt|ion{Deri|
|00000880| 76 61 74 69 76 65 20 6f | 66 20 20 24 78 5e 33 20 |vative o|f $x^3 |
|00000890| 2d 20 32 78 20 2b 20 31 | 24 2e 7d 20 0a 5c 65 6e |- 2x + 1|$.} .\en|
|000008a0| 64 7b 66 69 67 75 72 65 | 7d 0a 0a 5c 69 74 65 6d |d{figure|}..\item|
|000008b0| 20 20 53 65 65 20 46 69 | 67 75 72 65 20 34 2e 0a | See Fi|gure 4..|
|000008c0| 0a 5c 62 65 67 69 6e 7b | 66 69 67 75 72 65 7d 5b |.\begin{|figure}[|
|000008d0| 68 74 62 5d 0a 5c 65 70 | 73 66 79 73 69 7a 65 20 |htb].\ep|sfysize |
|000008e0| 39 30 70 74 0a 5c 63 65 | 6e 74 65 72 6c 69 6e 65 |90pt.\ce|nterline|
|000008f0| 7b 5c 65 70 73 66 66 69 | 6c 65 7b 61 6e 73 31 70 |{\epsffi|le{ans1p|
|00000900| 36 2e 65 70 73 7d 7d 0a | 5c 63 61 70 74 69 6f 6e |6.eps}}.|\caption|
|00000910| 7b 52 65 73 75 6c 74 20 | 6f 66 20 74 68 65 20 5c |{Result |of the \|
|00000920| 54 74 7b 50 6c 6f 74 7d | 20 69 6e 20 50 72 6f 62 |Tt{Plot}| in Prob|
|00000930| 6c 65 6d 20 35 2e 7d 20 | 0a 5c 65 6e 64 7b 66 69 |lem 5.} |.\end{fi|
|00000940| 67 75 72 65 7d 0a 0a 53 | 69 6e 63 65 20 77 65 20 |gure}..S|ince we |
|00000950| 6b 6e 6f 77 20 74 68 61 | 74 20 74 68 65 20 64 65 |know tha|t the de|
|00000960| 72 69 76 61 74 69 76 65 | 20 69 73 20 24 32 78 24 |rivative| is $2x$|
|00000970| 2c 20 61 6e 64 20 74 68 | 65 20 67 72 61 70 68 20 |, and th|e graph |
|00000980| 69 73 20 61 70 70 61 72 | 65 6e 74 6c 79 20 61 20 |is appar|ently a |
|00000990| 73 74 72 61 69 67 68 74 | 20 6c 69 6e 65 20 74 68 |straight| line th|
|000009a0| 72 6f 75 67 68 20 74 68 | 65 20 70 6f 69 6e 74 73 |rough th|e points|
|000009b0| 20 28 30 2c 20 30 29 20 | 61 6e 64 20 28 31 2c 20 | (0, 0) |and (1, |
|000009c0| 32 29 2c 20 74 68 65 20 | 61 70 70 72 6f 78 69 6d |2), the |approxim|
|000009d0| 61 74 65 20 73 6c 6f 70 | 65 20 66 75 6e 63 74 69 |ate slop|e functi|
|000009e0| 6f 6e 20 73 65 65 6d 73 | 20 74 6f 20 62 65 20 61 |on seems| to be a|
|000009f0| 20 66 69 6e 65 20 61 70 | 70 72 6f 78 69 6d 61 74 | fine ap|proximat|
|00000a00| 69 6f 6e 20 74 6f 20 74 | 68 65 20 64 65 72 69 76 |ion to t|he deriv|
|00000a10| 61 74 69 76 65 2d 2d 2d | 61 74 20 6c 65 61 73 74 |ative---|at least|
|00000a20| 20 6f 6e 20 74 68 65 20 | 63 72 75 64 65 20 67 72 | on the |crude gr|
|00000a30| 61 70 68 69 63 73 20 6c | 65 76 65 6c 2e 0a 0a 5c |aphics l|evel...\|
|00000a40| 69 74 65 6d 20 20 53 65 | 65 20 46 69 67 75 72 65 |item Se|e Figure|
|00000a50| 20 35 2e 20 20 54 68 65 | 20 61 70 70 72 6f 78 69 | 5. The| approxi|
|00000a60| 6d 61 74 65 20 64 65 72 | 69 76 61 74 69 76 65 20 |mate der|ivative |
|00000a70| 66 75 6e 63 74 69 6f 6e | 20 28 74 68 65 20 6c 69 |function| (the li|
|00000a80| 67 68 74 65 72 20 67 72 | 61 70 68 29 20 69 73 20 |ghter gr|aph) is |
|00000a90| 61 20 73 68 69 66 74 65 | 64 20 76 65 72 73 69 6f |a shifte|d versio|
|00000aa0| 6e 20 6f 66 20 74 68 65 | 20 24 5c 73 69 6e 24 20 |n of the| $\sin$ |
|00000ab0| 66 75 6e 63 74 69 6f 6e | 2e 20 20 53 69 6e 63 65 |function|. Since|
|00000ac0| 20 74 68 65 20 73 68 69 | 66 74 65 64 20 66 75 6e | the shi|fted fun|
|00000ad0| 63 74 69 6f 6e 20 70 65 | 61 6b 73 20 61 74 20 24 |ction pe|aks at $|
|00000ae0| 78 20 3d 20 30 24 2c 20 | 69 74 20 77 6f 75 6c 64 |x = 0$, |it would|
|00000af0| 20 73 65 65 6d 20 74 68 | 61 74 20 74 68 65 20 64 | seem th|at the d|
|00000b00| 65 72 69 76 61 74 69 76 | 65 20 6f 66 20 24 5c 73 |erivativ|e of $\s|
|00000b10| 69 6e 20 78 24 20 69 73 | 20 24 5c 63 6f 73 20 78 |in x$ is| $\cos x|
|00000b20| 24 2e 20 20 59 6f 75 20 | 63 6f 75 6c 64 20 61 6c |$. You |could al|
|00000b30| 73 6f 20 6d 65 61 73 75 | 72 65 20 74 68 65 20 73 |so measu|re the s|
|00000b40| 68 69 66 74 20 61 73 20 | 61 62 6f 75 74 20 31 2e |hift as |about 1.|
|00000b50| 35 20 66 72 6f 6d 20 74 | 68 65 20 67 72 61 70 68 |5 from t|he graph|
|00000b60| 20 61 73 20 63 6f 6d 70 | 61 72 65 64 20 74 6f 20 | as comp|ared to |
|00000b70| 74 68 65 20 63 6f 72 72 | 65 63 74 20 76 61 6c 75 |the corr|ect valu|
|00000b80| 65 20 24 5c 70 69 2f 32 | 20 5c 61 70 70 72 6f 78 |e $\pi/2| \approx|
|00000b90| 20 31 2e 35 37 24 20 74 | 6f 20 66 75 72 74 68 65 | 1.57$ t|o furthe|
|00000ba0| 72 20 76 65 72 69 66 79 | 20 74 68 69 73 20 67 75 |r verify| this gu|
|00000bb0| 65 73 73 2e 20 20 4c 61 | 74 65 72 20 74 68 69 73 |ess. La|ter this|
|00000bc0| 20 73 65 6d 65 73 74 65 | 72 2c 20 77 65 20 77 69 | semeste|r, we wi|
|00000bd0| 6c 6c 20 70 72 6f 76 65 | 20 74 68 61 74 20 20 74 |ll prove| that t|
|00000be0| 68 69 73 20 72 65 73 75 | 6c 74 20 69 73 20 63 6f |his resu|lt is co|
|00000bf0| 72 72 65 63 74 2e 20 0a | 0a 5c 62 65 67 69 6e 7b |rrect. .|.\begin{|
|00000c00| 66 69 67 75 72 65 7d 5b | 68 74 62 5d 0a 5c 65 70 |figure}[|htb].\ep|
|00000c10| 73 66 79 73 69 7a 65 20 | 39 30 70 74 0a 5c 63 65 |sfysize |90pt.\ce|
|00000c20| 6e 74 65 72 6c 69 6e 65 | 7b 5c 65 70 73 66 66 69 |nterline|{\epsffi|
|00000c30| 6c 65 7b 61 6e 73 31 70 | 37 2e 65 70 73 7d 7d 0a |le{ans1p|7.eps}}.|
|00000c40| 5c 63 61 70 74 69 6f 6e | 7b 47 72 61 70 68 73 20 |\caption|{Graphs |
|00000c50| 66 6f 72 20 50 72 6f 62 | 6c 65 6d 20 36 2e 7d 20 |for Prob|lem 6.} |
|00000c60| 0a 5c 65 6e 64 7b 66 69 | 67 75 72 65 7d 0a 0a 5c |.\end{fi|gure}..\|
|00000c70| 69 74 65 6d 20 52 65 20 | 77 68 69 63 68 20 69 73 |item Re |which is|
|00000c80| 20 74 68 65 20 66 75 6e | 63 74 69 6f 6e 20 61 6e | the fun|ction an|
|00000c90| 64 20 77 68 69 63 68 20 | 69 73 20 74 68 65 20 64 |d which |is the d|
|00000ca0| 65 72 69 76 61 74 69 76 | 65 2e 0a 09 5c 62 65 67 |erivativ|e...\beg|
|00000cb0| 69 6e 7b 65 6e 75 6d 65 | 72 61 74 65 7d 0a 09 5c |in{enume|rate}..\|
|00000cc0| 69 74 65 6d 20 20 53 65 | 65 20 46 69 67 75 72 65 |item Se|e Figure|
|00000cd0| 20 36 2e 20 20 20 54 68 | 65 20 7a 65 72 6f 20 61 | 6. Th|e zero a|
|00000ce0| 74 20 24 62 24 20 69 73 | 20 61 20 64 65 61 64 20 |t $b$ is| a dead |
|00000cf0| 67 69 76 65 2d 61 77 61 | 79 2e 20 20 49 66 20 74 |give-awa|y. If t|
|00000d00| 68 65 20 6c 69 67 68 74 | 20 63 75 72 76 65 20 77 |he light| curve w|
|00000d10| 65 72 65 20 74 68 65 20 | 64 65 72 69 76 61 74 69 |ere the |derivati|
|00000d20| 76 65 2c 20 74 68 65 6e | 20 74 68 65 20 66 75 6e |ve, then| the fun|
|00000d30| 63 74 69 6f 6e 20 63 75 | 72 76 65 20 77 6f 75 6c |ction cu|rve woul|
|00000d40| 64 20 68 61 76 65 20 61 | 20 68 6f 72 69 7a 6f 6e |d have a| horizon|
|00000d50| 74 61 6c 20 74 61 6e 67 | 65 6e 74 20 61 74 20 24 |tal tang|ent at $|
|00000d60| 62 24 2c 20 62 75 74 20 | 69 74 20 64 6f 65 73 20 |b$, but |it does |
|00000d70| 6e 6f 74 2e 20 20 54 68 | 75 73 2c 20 74 68 65 20 |not. Th|us, the |
|00000d80| 6c 69 67 68 74 20 63 75 | 72 76 65 20 6d 75 73 74 |light cu|rve must|
|00000d90| 20 62 65 20 74 68 65 20 | 66 75 6e 63 74 69 6f 6e | be the |function|
|00000da0| 20 61 6e 64 20 74 68 65 | 20 64 61 72 6b 20 6f 6e | and the| dark on|
|00000db0| 65 20 69 73 20 74 68 65 | 20 64 65 72 69 76 61 74 |e is the| derivat|
|00000dc0| 69 76 65 2e 20 20 4c 65 | 74 27 73 20 73 65 65 20 |ive. Le|t's see |
|00000dd0| 74 68 61 74 20 65 76 65 | 72 79 74 68 69 6e 67 20 |that eve|rything |
|00000de0| 69 73 20 63 6f 6e 73 69 | 73 74 65 6e 74 20 77 69 |is consi|stent wi|
|00000df0| 74 68 20 74 68 69 73 2e | 20 20 54 68 65 20 64 61 |th this.| The da|
|00000e00| 72 6b 20 63 75 72 76 65 | 20 68 61 73 20 7a 65 72 |rk curve| has zer|
|00000e10| 6f 65 73 20 61 74 20 24 | 62 24 20 61 6e 64 20 24 |oes at $|b$ and $|
|00000e20| 64 24 2c 20 73 75 72 65 | 20 65 6e 6f 75 67 68 2c |d$, sure| enough,|
|00000e30| 20 74 68 65 20 6c 69 67 | 68 74 20 63 75 72 76 65 | the lig|ht curve|
|00000e40| 20 68 61 73 20 68 6f 72 | 69 7a 6f 6e 74 61 6c 20 | has hor|izontal |
|00000e50| 74 61 6e 67 65 6e 74 73 | 20 61 74 20 74 68 65 73 |tangents| at thes|
|00000e60| 65 20 70 6f 69 6e 74 73 | 20 61 73 20 61 20 60 60 |e points| as a ``|
|00000e70| 67 6f 6f 64 27 27 20 66 | 75 6e 63 74 69 6f 6e 20 |good'' f|unction |
|00000e80| 73 68 6f 75 6c 64 2e 20 | 20 4f 6e 20 24 5b 61 2c |should. | On $[a,|
|00000e90| 20 30 5d 24 20 74 68 65 | 20 64 61 72 6b 20 63 75 | 0]$ the| dark cu|
|00000ea0| 72 76 65 20 69 73 20 70 | 6f 73 69 74 69 76 65 20 |rve is p|ositive |
|00000eb0| 61 6e 64 20 68 65 72 65 | 2c 20 74 68 65 20 6c 69 |and here|, the li|
|00000ec0| 67 68 74 20 63 75 72 76 | 65 20 69 73 20 69 6e 63 |ght curv|e is inc|
|00000ed0| 72 65 61 73 69 6e 67 20 | 61 73 20 61 20 60 60 67 |reasing |as a ``g|
|00000ee0| 6f 6f 64 27 27 20 66 75 | 6e 63 74 69 6f 6e 20 73 |ood'' fu|nction s|
|00000ef0| 68 6f 75 6c 64 2e 20 20 | 4f 6e 20 24 5b 30 2c 20 |hould. |On $[0, |
|00000f00| 64 5d 24 2c 20 74 68 65 | 20 64 61 72 6b 20 63 75 |d]$, the| dark cu|
|00000f10| 72 76 65 20 69 73 20 6e | 65 67 61 74 69 76 65 20 |rve is n|egative |
|00000f20| 61 6e 64 2c 20 73 75 72 | 65 20 65 6e 6f 75 67 68 |and, sur|e enough|
|00000f30| 2c 20 74 68 65 20 6c 69 | 67 68 74 20 6f 6e 65 20 |, the li|ght one |
|00000f40| 69 73 20 64 65 63 72 65 | 61 73 69 6e 67 2e 20 20 |is decre|asing. |
|00000f50| 46 69 6e 61 6c 6c 79 2c | 20 6f 6e 20 24 5b 64 2c |Finally,| on $[d,|
|00000f60| 20 66 5d 24 2c 20 74 68 | 65 20 64 61 72 6b 20 63 | f]$, th|e dark c|
|00000f70| 75 72 76 65 20 69 73 20 | 70 6f 73 69 74 69 76 65 |urve is |positive|
|00000f80| 20 61 6e 64 20 74 68 65 | 20 6c 69 67 68 74 20 66 | and the| light f|
|00000f90| 75 6e 63 74 69 6f 6e 20 | 63 75 72 76 65 20 69 6e |unction |curve in|
|00000fa0| 63 72 65 61 73 65 73 20 | 61 67 61 69 6e 2e 20 20 |creases |again. |
|00000fb0| 20 4f 70 65 6e 20 61 6e | 64 20 73 68 75 74 20 63 | Open an|d shut c|
|00000fc0| 61 73 65 3a 20 74 68 65 | 20 64 61 72 6b 20 63 75 |ase: the| dark cu|
|00000fd0| 72 76 65 20 69 73 20 74 | 68 65 20 64 65 72 69 76 |rve is t|he deriv|
|00000fe0| 61 74 69 76 65 20 6f 66 | 20 74 68 65 20 6c 69 67 |ative of| the lig|
|00000ff0| 68 74 20 63 75 72 76 65 | 2e 0a 09 0a 09 5c 62 65 |ht curve|.....\be|
|00001000| 67 69 6e 7b 66 69 67 75 | 72 65 7d 5b 68 74 62 5d |gin{figu|re}[htb]|
|00001010| 0a 09 5c 65 70 73 66 79 | 73 69 7a 65 20 39 30 70 |..\epsfy|size 90p|
|00001020| 74 0a 09 5c 63 65 6e 74 | 65 72 6c 69 6e 65 7b 5c |t..\cent|erline{\|
|00001030| 65 70 73 66 66 69 6c 65 | 7b 61 6e 73 31 70 38 61 |epsffile|{ans1p8a|
|00001040| 2e 65 70 73 7d 7d 0a 09 | 5c 63 61 70 74 69 6f 6e |.eps}}..|\caption|
|00001050| 7b 57 68 69 63 68 20 69 | 73 20 74 68 65 20 64 65 |{Which i|s the de|
|00001060| 72 69 76 61 74 69 76 65 | 3f 7d 20 0a 09 5c 65 6e |rivative|?} ..\en|
|00001070| 64 7b 66 69 67 75 72 65 | 7d 0a 09 0a 09 0a 09 5c |d{figure|}......\|
|00001080| 69 74 65 6d 20 53 65 65 | 20 46 69 67 75 72 65 20 |item See| Figure |
|00001090| 37 2e 20 20 20 54 68 65 | 20 7a 65 72 6f 65 73 20 |7. The| zeroes |
|000010a0| 6f 66 20 74 68 65 20 64 | 61 72 6b 20 63 75 72 76 |of the d|ark curv|
|000010b0| 65 20 61 74 20 24 62 2c | 20 30 24 20 63 6f 72 72 |e at $b,| 0$ corr|
|000010c0| 65 73 70 6f 6e 64 20 74 | 6f 20 68 6f 72 69 7a 6f |espond t|o horizo|
|000010d0| 6e 74 61 6c 20 74 61 6e | 67 65 6e 74 73 20 6f 66 |ntal tan|gents of|
|000010e0| 20 74 68 65 20 64 61 72 | 6b 20 63 75 72 76 65 2c | the dar|k curve,|
|000010f0| 20 73 6f 20 69 74 20 6c | 69 6b 65 6c 79 20 69 73 | so it l|ikely is|
|00001100| 20 74 68 65 20 64 65 72 | 69 76 61 74 69 76 65 20 | the der|ivative |
|00001110| 63 75 72 76 65 2e 20 20 | 4c 65 74 27 73 20 6d 61 |curve. |Let's ma|
|00001120| 6b 65 20 73 75 72 65 20 | 74 68 61 74 20 74 68 65 |ke sure |that the|
|00001130| 20 6f 74 68 65 72 20 65 | 76 69 64 65 6e 63 65 20 | other e|vidence |
|00001140| 69 73 20 63 6f 6e 73 69 | 73 74 65 6e 74 20 77 69 |is consi|stent wi|
|00001150| 74 68 20 74 68 65 20 6c | 69 67 68 74 20 63 75 72 |th the l|ight cur|
|00001160| 76 65 20 62 65 69 6e 67 | 20 74 68 65 20 66 75 6e |ve being| the fun|
|00001170| 63 74 69 6f 6e 20 61 6e | 64 20 74 68 65 20 64 61 |ction an|d the da|
|00001180| 72 6b 20 6f 6e 65 20 62 | 65 69 6e 67 20 74 68 65 |rk one b|eing the|
|00001190| 20 64 65 72 69 76 61 74 | 69 76 65 2e 20 20 54 68 | derivat|ive. Th|
|000011a0| 65 20 64 61 72 6b 20 63 | 75 72 76 65 20 69 73 20 |e dark c|urve is |
|000011b0| 70 6f 73 69 74 69 76 65 | 20 69 6e 20 74 68 65 20 |positive| in the |
|000011c0| 69 6e 74 65 72 76 61 6c | 73 20 24 5b 61 2c 20 62 |interval|s $[a, b|
|000011d0| 5d 2c 20 5b 30 2c 20 65 | 5d 24 20 61 6e 64 2c 20 |], [0, e|]$ and, |
|000011e0| 69 6e 64 65 65 64 2c 20 | 74 68 65 20 6c 69 67 68 |indeed, |the ligh|
|000011f0| 74 20 63 75 72 76 65 20 | 69 73 20 69 6e 63 72 65 |t curve |is incre|
|00001200| 61 73 69 6e 67 20 69 6e | 20 74 68 65 73 65 20 69 |asing in| these i|
|00001210| 6e 74 65 72 76 61 6c 73 | 2e 20 20 4c 69 6b 65 77 |ntervals|. Likew|
|00001220| 69 73 65 2c 20 20 74 68 | 65 20 64 61 72 6b 20 63 |ise, th|e dark c|
|00001230| 75 72 76 65 20 69 73 20 | 6e 65 67 61 74 69 76 65 |urve is |negative|
|00001240| 20 69 6e 20 24 5b 62 2c | 20 30 5d 24 20 61 6e 64 | in $[b,| 0]$ and|
|00001250| 2c 20 69 6e 64 65 65 64 | 2c 20 74 68 65 20 6c 69 |, indeed|, the li|
|00001260| 67 68 74 20 63 75 72 76 | 65 20 69 73 20 64 65 63 |ght curv|e is dec|
|00001270| 72 65 61 73 69 6e 67 20 | 69 6e 20 74 68 69 73 20 |reasing |in this |
|00001280| 69 6e 74 65 72 76 61 6c | 2e 20 20 41 73 20 65 76 |interval|. As ev|
|00001290| 69 64 65 6e 63 65 20 74 | 68 61 74 20 74 68 65 20 |idence t|hat the |
|000012a0| 6c 69 67 68 74 20 63 75 | 72 76 65 20 63 61 6e 20 |light cu|rve can |
|000012b0| 6e 6f 74 20 62 65 20 74 | 68 65 20 64 65 72 69 76 |not be t|he deriv|
|000012c0| 61 74 69 76 65 20 66 75 | 6e 63 74 69 6f 6e 2c 20 |ative fu|nction, |
|000012d0| 77 65 20 63 61 6e 20 6e | 6f 74 65 20 74 68 61 74 |we can n|ote that|
|000012e0| 20 74 68 65 20 6c 69 67 | 68 74 20 63 75 72 76 65 | the lig|ht curve|
|000012f0| 20 69 73 20 61 6c 77 61 | 79 73 20 70 6f 73 69 74 | is alwa|ys posit|
|00001300| 69 76 65 2c 20 73 6f 20 | 69 74 73 20 66 75 6e 63 |ive, so |its func|
|00001310| 74 69 6f 6e 20 63 75 72 | 76 65 20 77 6f 75 6c 64 |tion cur|ve would|
|00001320| 20 68 61 76 65 20 74 6f | 20 61 6c 77 61 79 73 20 | have to| always |
|00001330| 69 6e 63 72 65 61 73 65 | 2d 2d 2d 68 6f 77 65 76 |increase|---howev|
|00001340| 65 72 2c 20 74 68 65 20 | 64 61 72 6b 20 63 75 72 |er, the |dark cur|
|00001350| 76 65 20 69 73 20 69 6e | 69 74 69 61 6c 6c 79 20 |ve is in|itially |
|00001360| 64 65 63 72 65 61 73 69 | 6e 67 2d 2d 2d 63 61 73 |decreasi|ng---cas|
|00001370| 65 20 63 6c 6f 73 65 64 | 3a 20 74 68 65 20 64 61 |e closed|: the da|
|00001380| 72 6b 20 63 75 72 76 65 | 20 69 73 20 74 68 65 20 |rk curve| is the |
|00001390| 64 65 72 69 76 61 74 69 | 76 65 20 6f 66 20 74 68 |derivati|ve of th|
|000013a0| 65 20 6c 69 67 68 74 20 | 63 75 72 76 65 2e 0a 09 |e light |curve...|
|000013b0| 0a 09 5c 62 65 67 69 6e | 7b 66 69 67 75 72 65 7d |..\begin|{figure}|
|000013c0| 5b 68 74 62 5d 0a 09 5c | 65 70 73 66 79 73 69 7a |[htb]..\|epsfysiz|
|000013d0| 65 20 39 30 70 74 0a 09 | 5c 63 65 6e 74 65 72 6c |e 90pt..|\centerl|
|000013e0| 69 6e 65 7b 5c 65 70 73 | 66 66 69 6c 65 7b 61 6e |ine{\eps|ffile{an|
|000013f0| 73 31 70 38 62 2e 65 70 | 73 7d 7d 0a 09 5c 63 61 |s1p8b.ep|s}}..\ca|
|00001400| 70 74 69 6f 6e 7b 57 68 | 69 63 68 20 69 73 20 74 |ption{Wh|ich is t|
|00001410| 68 65 20 64 65 72 69 76 | 61 74 69 76 65 3f 7d 20 |he deriv|ative?} |
|00001420| 0a 09 5c 65 6e 64 7b 66 | 69 67 75 72 65 7d 0a 09 |..\end{f|igure}..|
|00001430| 0a 09 5c 69 74 65 6d 20 | 53 65 65 20 46 69 67 75 |..\item |See Figu|
|00001440| 72 65 20 38 2e 20 20 54 | 68 69 73 20 6f 6e 65 20 |re 8. T|his one |
|00001450| 69 73 20 61 20 73 74 75 | 6d 70 65 72 2e 20 20 41 |is a stu|mper. A|
|00001460| 73 73 75 6d 65 20 74 68 | 61 74 20 74 68 65 20 64 |ssume th|at the d|
|00001470| 61 72 6b 20 63 75 72 76 | 65 20 69 73 20 74 68 65 |ark curv|e is the|
|00001480| 20 64 65 72 69 76 61 74 | 69 76 65 3a 20 69 74 20 | derivat|ive: it |
|00001490| 69 73 20 6e 65 67 61 74 | 69 76 65 20 6f 6e 20 24 |is negat|ive on $|
|000014a0| 5b 61 2c 20 30 5d 24 20 | 61 6e 64 20 74 68 65 20 |[a, 0]$ |and the |
|000014b0| 6c 69 67 68 74 20 63 75 | 72 76 65 20 64 65 63 72 |light cu|rve decr|
|000014c0| 65 61 73 65 73 20 6f 6e | 20 74 68 69 73 20 69 6e |eases on| this in|
|000014d0| 74 65 72 76 61 6c 3b 20 | 69 74 20 69 73 20 70 6f |terval; |it is po|
|000014e0| 73 69 74 69 76 65 20 6f | 6e 20 24 5b 30 2c 20 62 |sitive o|n $[0, b|
|000014f0| 5d 24 20 61 6e 64 20 74 | 68 65 20 6c 69 67 68 74 |]$ and t|he light|
|00001500| 20 63 75 72 76 65 20 69 | 6e 63 72 65 61 73 65 73 | curve i|ncreases|
|00001510| 20 68 65 72 65 2e 20 20 | 53 65 65 6d 73 20 4f 4b | here. |Seems OK|
|00001520| 2e 20 20 20 41 73 73 75 | 6d 65 20 74 68 61 74 20 |. Assu|me that |
|00001530| 74 68 65 20 6c 69 67 68 | 74 20 63 75 72 76 65 20 |the ligh|t curve |
|00001540| 69 73 20 74 68 65 20 64 | 65 72 69 76 61 74 69 76 |is the d|erivativ|
|00001550| 65 3a 20 69 74 20 69 73 | 20 61 6c 77 61 79 73 20 |e: it is| always |
|00001560| 70 6f 73 69 74 69 76 65 | 20 61 6e 64 2c 20 79 65 |positive| and, ye|
|00001570| 73 2c 20 74 68 65 20 64 | 61 72 6b 20 63 75 72 76 |s, the d|ark curv|
|00001580| 65 20 69 73 20 61 6c 77 | 61 79 73 20 69 6e 63 72 |e is alw|ays incr|
|00001590| 65 61 73 69 6e 67 2e 20 | 54 68 69 73 20 73 65 65 |easing. |This see|
|000015a0| 6d 73 20 4f 4b 2c 20 74 | 6f 6f 21 20 20 57 68 65 |ms OK, t|oo! Whe|
|000015b0| 6e 20 77 65 20 6c 65 61 | 72 6e 20 68 6f 77 20 74 |n we lea|rn how t|
|000015c0| 6f 20 69 6e 74 65 72 70 | 72 65 74 20 74 68 65 20 |o interp|ret the |
|000015d0| 73 6c 6f 70 65 20 6f 66 | 20 74 68 65 20 64 65 72 |slope of| the der|
|000015e0| 69 76 61 74 69 76 65 20 | 28 74 68 69 73 20 66 75 |ivative |(this fu|
|000015f0| 6e 63 74 69 6f 6e 20 69 | 73 20 63 61 6c 6c 65 64 |nction i|s called|
|00001600| 20 74 68 65 20 73 65 63 | 6f 6e 64 20 64 65 72 69 | the sec|ond deri|
|00001610| 76 61 74 69 76 65 29 2c | 20 77 65 20 77 69 6c 6c |vative),| we will|
|00001620| 20 62 65 20 61 62 6c 65 | 20 74 6f 20 74 65 6c 6c | be able| to tell|
|00001630| 20 74 68 61 74 20 61 63 | 74 75 61 6c 6c 79 20 74 | that ac|tually t|
|00001640| 68 65 20 6c 69 67 68 74 | 20 63 75 72 76 65 20 69 |he light| curve i|
|00001650| 73 20 74 68 65 20 66 75 | 6e 63 74 69 6f 6e 20 61 |s the fu|nction a|
|00001660| 6e 64 20 74 68 65 20 64 | 61 72 6b 20 6f 6e 65 20 |nd the d|ark one |
|00001670| 69 74 73 20 64 65 72 69 | 76 61 74 69 76 65 2e 20 |its deri|vative. |
|00001680| 0a 09 0a 09 5c 62 65 67 | 69 6e 7b 66 69 67 75 72 |....\beg|in{figur|
|00001690| 65 7d 5b 68 74 62 5d 0a | 09 5c 65 70 73 66 79 73 |e}[htb].|.\epsfys|
|000016a0| 69 7a 65 20 39 30 70 74 | 0a 09 5c 63 65 6e 74 65 |ize 90pt|..\cente|
|000016b0| 72 6c 69 6e 65 7b 5c 65 | 70 73 66 66 69 6c 65 7b |rline{\e|psffile{|
|000016c0| 61 6e 73 31 70 38 63 2e | 65 70 73 7d 7d 0a 09 5c |ans1p8c.|eps}}..\|
|000016d0| 63 61 70 74 69 6f 6e 7b | 57 68 69 63 68 20 69 73 |caption{|Which is|
|000016e0| 20 74 68 65 20 64 65 72 | 69 76 61 74 69 76 65 3f | the der|ivative?|
|000016f0| 7d 20 0a 09 5c 65 6e 64 | 7b 66 69 67 75 72 65 7d |} ..\end|{figure}|
|00001700| 0a 09 0a 09 5c 65 6e 64 | 7b 65 6e 75 6d 65 72 61 |....\end|{enumera|
|00001710| 74 65 7d 0a 09 0a 5c 65 | 6e 64 7b 65 6e 75 6d 65 |te}...\e|nd{enume|
|00001720| 72 61 74 65 7d 0a 5c 65 | 6e 64 7b 64 6f 63 75 6d |rate}.\e|nd{docum|
|00001730| 65 6e 74 7d 0a | |ent}. | |
+--------+-------------------------+-------------------------+--------+--------+